The proper drive for your projects

Bosch electric motors for industrial applications

Bosch provides a wide range of technically and economically interesting product solutions. Take advantage of our engineers’ experience gathered from application in millions of automobiles and from many other industrial uses.

The ideal contact person can be found on the last page of the catalogue.
Electric motors from Bosch encourage movement in product development

With its competence, Bosch, as the leading global developer and manufacturer of automotive technology, has proved itself millions of times over in mobile applications. As a development partner to various manufacturers of automotive technology, Bosch is aligned to the requirements of its customers. Thus, Bosch electric motors are also the ideal solution for many applications outside of the automobile. The total of its advantages are immediately obvious, where quality, reliability and inexpensive prices through high-volume production are called for. Bosch electric motors encourage movement in product development for many applications outside of the automobile.

Bosch contacts worldwide for sales and advice

- Bosch electric motors

Industrial customers in particular, expect to have competent contact partners at their suppliers. To this end, an independent engineering team has been set up. Bosch engineers will advise and support you in the application engineering for D.C. motors, blowers and pumps. The proper contact person can be found on the last page of the catalogue.

www.bosch-elektromotoren.de
Content

2 Unlimited service · Bosch electric motors
4 Parameter explanation

10 D.C. motors with transmission
40 WDD · Direct drive
42 VMC flap actuators
46 D.C. motors without transmission
60 Blowers with D.C. motors
62 Solenoid valves
66 PAD Water-circulation pumps with brushless drive
68 List of part numbers
72 Inquiry data sheet

Notes

This catalog lists the standard parts supplied, with all the technical information normally required by design engineers to select the best motor for their particular requirements. These motors were originally designed for use in motor vehicles.

We recommend that Bosch be consulted first before you use motors for any applications other than those specified, particularly in the case of other requirements, loads, or environmental conditions. Please use the "Inquiry Sheet" for this purpose.

Subject to change.
The current drawings quoted shall prevail.
Unlimited service – Bosch electric motors

The worldwide competent partner for industrial applications

As the largest manufacturer of electric motors in Europe, Bosch provides its customers with a comprehensive range of products including brushless D.C. motors and brush-type D.C. motors. Bosch electric motors are developed for the automotive industry and installed into automobiles and commercial vehicles as drives for wiping systems, engine cooling and passenger compartment air-conditioning as well as for the adjustment of windows, sliding roofs and seats.

The Bosch electric motors referred to here are permanent-magnet-excited D.C. motors. They excel on account of an excellent power/weight ratio, a broad working range and through outstanding flexibility for adaptation to different requirements and installation situations. In addition to this they are extremely quiet and very robust (see D.C. motors without transmission).

Bosch plants around the globe operate according to the stringent, internationally-binding Bosch quality guidelines, which only permit products for series production that have been well-proven in tough endurance tests. Profit from the strongly competitive products of mass production.
Customer orientation in development, production and sales

Innovative technology from the automobile industry

Many million times well proven and reliable Bosch quality
As a leading developer and manufacturer of automotive technology Bosch is also a mobile and experienced partner outside the automobile industry.

Bosch electric motors operate absolutely reliably
They are available in a light and compact design, have a high output and long service life.

Price and performance, that match up
High-volume production results in inexpensive prices.

Individual solutions for your application

The right solution for every requirement
Due to a variety of different designs and sizes, the Bosch range of electric motors provides a great deal of flexibility for installation and use. Bosch electric motors operate in a D.C. voltage range of 12 to 24 Volt. They are also optionally available with and without Hall elements.

Successful application examples
Power-operated hospital beds, wheel chairs, garage-door drives, lawnmowers, locking systems and output systems, electric mopeds and lots more.

Professional customer service

Engineering team for new developments
Right from the very start, Bosch engineers provide their support and advice in the application engineering for D.C. motors, blowers or pumps.

All-encompassing customer orientation
Bosch guarantees worldwide uniform production and quality standards, and availability of its products.

Technical information
Comprehensive information on Bosch electric motors is available in our catalogue or on the available CD-ROM. Apart from this, you can also find all technical details online at www.bosch-elektromotoren.de.
Parameter explanation

Nominal values

Nominal value
Value of a variable (e.g. voltage, current, resistance ...) according to which a motor, blower, or pump, or its characteristics and parts are specified or according to which they are designated.

Power consumption P_1

$P_1 = U \cdot I$

P_1 Power consumption in W
U Voltage in V
I Current in A

Output power P_2
For motors the output power P_2 is always given.

$P_2 = 2 \pi \cdot M \cdot n$

P_2 Output power in W
M Torque in Nm
n Rotational speed in min$^{-1}$

Efficiency η
Efficiency refers to the relationship between mechanical output P_2 and electrical power input P_1.

$\eta = \frac{P_2}{P_1}$

Example
Theoretically, a nominal voltage of 24 V and a rated current of 35 A result in a power input of P_1:

$P_1 = U_1 \cdot I_1; P_1 = 24 \text{ V} \cdot 35 \text{ A}; P_1 = 840 \text{ W}$

This power consumption P_1 and the output $P_{2\text{N}}$ (see Fig. page 7) determined from the characteristic-curves chart are used to calculate the efficiency η:

$\eta = \frac{P_{2\text{N}}}{P_1} = \frac{600 \text{ W}}{840 \text{ W}} = 0.71 = 71\%$

Rated torque M_N
The motor’s rated torque is calculated from:

$M_\text{N} = \frac{60}{2\pi} \cdot \frac{P_{2\text{N}}}{n_\text{N}}$

M_N Rated torque in Nm
$P_{2\text{N}}$ Rated power output in W
n_N Rated speed in min$^{-1}$

Rated speed n_N
Rated speed refers to the speed of a motor supplied with rated voltage and driven at a rated output.

Direction of rotation
When looking at the motor’s shaft end, clockwise operation is deemed to be right-handed rotation.

For motors with two shaft ends, the shaft end opposite the commutator determines the direction of rotation.

Short-circuit values
The current consumed by the motor in case of short-circuit (when armature is braked to standstill), is the maximum current I_{max}.

When a short circuit occurs, the maximum torque M_A (breakaway torque) is effective.

IP degrees of protection
Valid for electrical equipment of road vehicles as under IEC 60529 and DIN 40050, Part 9.

- Protection of electrical equipment within housing against influence of solid foreign bodies including dust.
- Protection of electrical equipment within housing against ingress of water.
- Protection of people against touching of moving mechanical parts within housing.

Fastening
- Housing fastening: By means of screws on the motor or transmission housing. Blowers are fastened in a similar manner, either to the drive motor or the air shroud.
- Flange mounting: The motor’s drive-end support has a two or three-hole flange, or the front side contains three or four threaded holes for fastening.

Cooling
- Internal natural cooling: open-type design, without fan.
- Internal natural cooling: open-type design, with separate fan.
- Internal forced-air cooling: open-type design, with externally-driven fan.
- Surface natural cooling: closed design, without fan.
- Surface natural cooling: closed design, with separate fan.
IP-code structure

<table>
<thead>
<tr>
<th>Code letters</th>
<th>First index number</th>
<th>0..6 or letter X</th>
<th>Second index number</th>
<th>0..9 or letter X</th>
<th>Supplementary letter (facultative)</th>
<th>A, B, C, D</th>
<th>Supplementary letter (facultative)</th>
<th>M, S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If an index number is not given, then the letter “X” must be substituted (i.e. “XX”, if both index numbers are missing). Additional and/or supplementary letters can be omitted without any substitution:

- **2) The supplementary letter “K”** is placed either immediately after the first index numbers 5 and 6 or immediately after the second index numbers 4, 6 and 9.
- **3) During the water test for example:** IP16KB protection against ingress of solid foreign bodies with a diameter ≤ 50 mm, protection against powerful spray water at high pressure, protection against being touched by fingers.

Explanations of IP code

<table>
<thead>
<tr>
<th>1. Index number and supplementary letter</th>
<th>Protection of electrical equipment against ingress of foreign bodies</th>
<th>People</th>
<th>2. Index number and supplementary letter</th>
<th>Protection of electrical equipment against ingress of water</th>
<th>Letter (facultative)</th>
<th>Protection of people in event of contact with hazardous parts</th>
<th>Letter (facultative)</th>
<th>Motion of moving parts (Teile 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not protected</td>
<td>Not protected</td>
<td>0</td>
<td>Not protected</td>
<td>A</td>
<td>Protection against contact with back of hand</td>
<td>M</td>
<td>Protection against moving parts (Teile 1)</td>
</tr>
<tr>
<td>1</td>
<td>Protection against foreign bodies ≤ 50 mm</td>
<td>Protection against contact with back of hand</td>
<td>1</td>
<td>Protection against vertical droplets</td>
<td>B</td>
<td>Protection against contact with fingers</td>
<td>S</td>
<td>Standstill of moving parts (Teile 1)</td>
</tr>
<tr>
<td>2</td>
<td>Protection against foreign bodies ≤ 12.5 mm</td>
<td>Protection against contact with fingers</td>
<td>2</td>
<td>Protection against droplets, 15° Inclination</td>
<td>C</td>
<td>Protection against contact with tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Protection against foreign bodies ≤ 2.5 mm</td>
<td>Protection against contact with tools</td>
<td>3</td>
<td>Protection against spray water</td>
<td>D</td>
<td>Protection against contact with wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Protection against foreign bodies ≤ 1.0 mm</td>
<td>Protection against contact with wire</td>
<td>4</td>
<td>Protection against spray water</td>
<td></td>
<td>Protection against contact with wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>Dust-protected</td>
<td>Protection against contact with wire</td>
<td>4K</td>
<td>Protection against spray water with increased pressure</td>
<td></td>
<td>Protection against contact with wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6K</td>
<td>Dust-proof</td>
<td>Protection against contact with wire</td>
<td>5</td>
<td>Protection against spray water</td>
<td></td>
<td>Protection against contact with wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Protection against powerful spray water</td>
<td></td>
<td>Protection against powerful spray water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6K</td>
<td>Protection against powerful spray water with increased pressure</td>
<td></td>
<td>Protection against powerful spray water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>Protection against temporary immersion</td>
<td></td>
<td>Protection against temporary immersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Protection against permanent immersion</td>
<td></td>
<td>Protection against permanent immersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9K</td>
<td>Protection against high pressure/vapor pressure cleaning</td>
<td></td>
<td>Protection against high pressure/vapor pressure cleaning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Operating modes (VDE 0530)

Continuous operation S 1
Operation with constant load condition, the duration of which is sufficient to reach the thermal steady-state condition.

Parameters for curve inspection
- P_1: Power input
- P_v: Power loss
- θ: Temperature
- θ_{max}: Highest temperature
- t_b: Load period
- t_r: Relative on period (as percentage)
- t_s: Duration
- t_{ist}: Standstill period

Short-term operation S 2
Operation with constant load condition, which does not last long enough however to enable the thermal steady-state condition to be reached, and a subsequent pause, which lasts long enough for the motor temperature not to deviate more than 2 K from the coolant temperature.

Example: S 2 – 60 min
(The stated time refers to 60 minutes of operation at normal rating)

Intermittent operation S 3
Operation, comprised of a sequence of similar cycles, each of which encompasses a time with constant load and a pause, whereby the startup current does not exert any perceptible influence on heating.

Example: S 3 – 10%
(Stated percentage refers to on period)

Power input

Power loss

Temperature

Power input

Power loss

Temperature

$t_r = \frac{t_b}{t_s + t_{ist}} \cdot 100\%$

Symbols
- Permanent-(magnet) excited D.C. motor
- Interference-suppression component
- Throttle
- Interference-suppression component
- Capacitor
- Varistor disk
- Resistance
- Thermoswitch
- Limit shutoff
- Varistor (voltage-dependent resistor)
- Bridge rectifier
Characteristic curves

With a specified working point of 160 Ncm one plots a vertical line to the torque axis. The intersecting points of these vertical lines with the various characteristic curves result in the operating data for the rated speed n_N, rated current I_N and mechanical output $P_{2\text{N}}$.

Explanation of characteristic curve evaluation
AP Working point
M Torque
P_2 Power input
I Current
n Rotational speed

Example:
Given: $M_\text{N} = 160$ Ncm.
Found: $n_\text{N} = 3.800$ rpn (min$^{-1}$).
$P_{2\text{N}} = 636$ W and $I_\text{N} = 35$ A.

Identify and manufacturer declaration in accordance with EU directive

As under the EU Directive all electrically-powered machines, devices and systems, which are manufactured, imported and sold within the borders of the European Union must have a CE-label attached to them. The EU Directive also includes the following individual guidelines, which are of significance for motor users.

1. **Machine Directive**
 It is valid for self-contained operational machines or any interlinking of machines to form integral systems.
 It is not valid for machine components however, such as, for example, electrical control systems or electric motors which have no independent function.
 The entire machine or system must always comply with the Directive.

2. **Low-voltage Directive**
 It is valid and is to be applied for all electric motors as from a low-voltage limit of 75 V for D.C. voltage and 50 V for A.C. voltage and higher.
 Because the electric motors listed in this catalogue are designed for rated voltages of up to maximum 24 V, they are not governed by this Directive.

3. **EMC Directive**
 This Directive is valid for all electrical and electronic devices, installations and systems.
 However, this Directive is also valid for complex components such as, e.g. electric motors, although this only applies where they are openly available for purchase by the public. The electric motors listed in this catalogue are solely shipped as supplied parts or replacement parts, and are not subject to § 5 paragraph 5 of the EMC Act regarding a mandatory CE label.

 The limits for the relaying and the radiation of high-frequency interference are specified in EN 55014 of the EMC Act. Because of the previously-mentioned reasons, Bosch electric motors are on no account subject to mandatory CE labeling.

 We will gladly assist you with information in all matters relating to the acceptance of your application.
Motors with Hall sensor

Hall effect

If a current I_S flows through a chip, a Hall voltage U_{H} is generated transverse to the direction of the current, the size of which is proportional to the magnetic induction B (vertical to I_S) and the current I_S. The Hall voltage U_{H} is made up of:

$$U_{H} = R_H \cdot \frac{I_S \cdot B}{d}$$

R_H Hall-constant factor

Since the resulting Hall voltages are extremely small, they are amplified. When using silicon Hall elements, the circuit for signal processing (e.g., a Schmitt trigger with subsequent driver) are integrated directly onto the same chip. This component is then designated a Hall-IC. The output is a transistor with open collector, with which a switching function is realized.

Permanently connected to the armature shaft is a magnetic ring, the magnetic field of which permeates the Hall element. When the armature shaft rotates, the magnetomotive-force direction in the Hall element changes. The output transistor is then either switched through or open.
Hall-effect applications in D.C. motors

By counting the generated output-voltage pulses, one can determine the number of rotations and thus the speed. If the rotational motion is converted into a linear motion, it then becomes possible to monitor the adjustment travel exactly. If there are two Hall generators installed offset to each other at a specific angle α in a motor, then the direction of rotation can also be determined.

Parameter explanation

- Hall-effect applications in D.C. motors
 - Basic arrangement in motor with 2-pole ring magnet
 - Output signals, 1 armature rotation
 - Basic arrangement in motor with 8-pole ring magnet
 - Output signals, 1 armature rotation

Output signals

- U_{H1}: Output voltage of first Hall generator
- U_{H2}: Output voltage of second Hall generator
- α: Angle between the two Hall generators
- Φ: Rotational angle

Basic arrangement in motor

- H_1, H_2: Hall generator
- N: North pole
- S: South pole
- α: Angle between the two Hall generators
Bosch electric motors with transmission provide fitting solutions for almost every application. They provide a wide range of performance and are highly versatile in their application. The new generation of Bosch adjustment motors have a compact design and have been optimized in terms of installation space and weight. In addition to this, they are exceptionally quiet and highly robust. The desired speed can easily be regulated by changing the voltage. The direction of rotation can be inverted by changing over +/-.

Maximum torque is available during the startup phase.

Application examples

Automotive technology:
Flap positioning for climate control, air proportioning and distribution, wiper motors, power-window motors, seat-adjustment motors, adjustment motors

Industrial applications:
Control motors, garage-door drives, locking systems, medical technology etc.

Product features

- Wide range of permanently-excited motor-and-gear assemblies
- D.C. voltage range from 12 to 24 Volt
- Available with and without self-locking feature
- Breakaway torques from 1 Nm to 25 Nm
- Speed range from 16 to 700 rpm (min⁻¹)
- Available with and without Hall sensors

Advantages for your application

- A multitude of different sizes and designs for greater flexibility
- Robust and reliable quality, well-proven millions of times over in automobiles
- High reliability
- Favorable price/performance ratio
AHC

12 V 10,4 W

Part number 0 390 201 948
Nominal voltage \(U_n \) 12 V
Nominal power \(P_n \) 10,4 W
Nominal current \(I_n \) < 5 A
Maximum current \(I_{\text{max}} \) 17 A
Nominal speed \(n_n \) 22 min\(^{-1}\)
Nominal torque \(M_n \) 4,5 Nm
Breakaway torque \(M_{\text{br}} \) > 16 Nm
Reduction \(i \) 119,5 : 1
Direction of rotation L/R
Type of duty S 2 - 5 min
Degree of protection IP 50
Weight approx. 0,63 kg

Clockwise: II on (+)
Anti-clockwise: I on (+)

AHC

with Hall sensor

12 V 10,4 W

Part number 0 390 201 949
Nominal voltage \(U_n \) 12 V
Nominal power \(P_n \) 10,4 W
Nominal current \(I_n \) < 5 A
Maximum current \(I_{\text{max}} \) 17 A
Nominal speed \(n_n \) 22 min\(^{-1}\)
Nominal torque \(M_n \) 4,5 Nm
Breakaway torque \(M_{\text{br}} \) > 16 Nm
Reduction \(i \) 119,5 : 1
Direction of rotation L/R
Type of duty S 2 - 5 min
Degree of protection IP 50
Weight approx. 0,63 kg

Clockwise: II on (+)
Anti-clockwise: I on (+)
AHC

12 V 10.4 W

- **Part number**: 0 390 201 964
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 10.4$ W
- **Nominal current**: $I_n < 5$ A
- **Maximum current**: $I_{max} = 17$ A
- **Nominal speed**: $n_n = 22$ min$^{-1}$
- **Nominal torque**: $M_n = 4.5$ Nm
- **Breakaway torque**: $M_s > 16$ Nm
- **Reduction**: $i = 119.5 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.63 kg

Clockwise: (+) to I
Anti-clockwise: (+) to II

12 V 21 W

- **Part number**: 0 390 201 900
 mirror-image: 0 390 201 912
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 21$ W
- **Nominal current**: $I_n < 6$ A
- **Maximum current**: $I_{max} = 17$ A
- **Nominal speed**: $n_n = 675$ min$^{-1}$
- **Nominal torque**: $M_n = 0.3$ Nm
- **Breakaway torque**: $M_s > 1$ Nm
- **Reduction**: $i = 27 : 4$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.33 kg

Clockwise: I to (-), II to (+)
Anti-clockwise: I to (+), II to (-)

*A Inner spur gear, number of teeth 8, module 0.8
S Matching plug housing Tyco No. 968 182-1
AHC

12 V 29 W

- Part number: 0 390 201 901
- Mirror-image: 0 390 201 913
- Nominal voltage: $U_n = 12$ V
- Nominal power: $P_n = 29$ W
- Nominal current: $I_n < 7.5$ A
- Maximum current: $I_{max} = 22$ A
- Nominal speed: $n_n = 700$ min$^{-1}$
- Nominal torque: $M_n = 0.4$ Nm
- Breakaway torque: $M_t > 1.4$ Nm
- Reduction: $i = 27 : 4$
- Direction of rotation: L/R
- Type of duty: S 2 - 5 min
- Degree of protection: IP 50
- Weight: approx. 0.40 kg

Clockwise: II to (+), I to (–)
Anti-clockwise: I to (+), II to (–)

AHC with Hall sensor

12 V 21 W

- Part number: 0 390 201 902
- Mirror-image: 0 390 201 914
- Nominal voltage: $U_n = 12$ V
- Nominal power: $P_n = 21$ W
- Nominal current: $I_n < 6$ A
- Maximum current: $I_{max} = 17$ A
- Nominal speed: $n_n = 675$ min$^{-1}$
- Nominal torque: $M_n = 0.3$ Nm
- Breakaway torque: $M_t > 1$ Nm
- Reduction: $i = 27 : 4$
- Direction of rotation: L/R
- Type of duty: S 2 - 5 min
- Degree of protection: IP 50
- Weight: approx. 0.33 kg

Clockwise: I to (+), II to (–)
Anti-clockwise: I to (–), II to (+)
AHC

with Hall sensor

12 V 29 W

- **Part number**: 0 390 201 903
- **Mirror-image**: 0 390 201 915
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 29$ W
- **Nominal current**: $I_n < 7.5$ A
- **Maximum current**: $I_{max} = 22$ A
- **Nominal speed**: $n_{n} = 700$ min$^{-1}$
- **Nominal torque**: $M_n = 0.4$ Nm
- **Breakaway torque**: $M_r > 1.2$ Nm
- **Reduction**: $i = 27 : 4$
- **Type of duty**: $S = 2 \text{ - } 5$ min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.40 kg

Clockwise: I to (+), II to (–)
Anti-clockwise: I to (–), II to (+)

A square-wave period is generated for each turn of the armature.

12 V 8 W

- **Part number**: 0 390 201 918
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 8$ W
- **Nominal current**: $I_n < 8$ A
- **Maximum current**: $I_{max} = 23.5$ A
- **Nominal speed**: $n_{n} = 26$ min$^{-1}$
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_r > 19$ Nm
- **Reduction**: $i = 185.5 : 1$
- **Type of duty**: $S = 2 \text{ - } 5$ min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.45 kg

Clockwise: (+) to II, (–) to I
Anti-clockwise: (+) to I, (–) to II

AHC
AHC with Hall sensor

12 V 8 W

- **Part number**: 0 390 201 925
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 8$ W
- **Nominal current**: $I_n < 8$ A
- **Maximum current**: $I_{\text{max}} = 23.5$ A
- **Nominal speed**: $n_n = 26$ min⁻¹
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_{\text{br}} > 19$ Nm
- **Reduction**: $i = 185.5 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.45 kg

Clockwise: (+) to II, (-) to I
Anti-clockwise: (+) to I, (-) to II

A square-wave period is generated for each turn of the armature.

Part Number: 0 390 201 925
Nominal Voltage: 12 V
Nominal Current: < 8 A
Maximum Current: 23.5 A
Nominal Speed: 26 min⁻¹
Nominal Torque: 3 Nm
Breakaway Torque: > 19 Nm
Reduction: 185.5 : 1
Direction of Rotation: L/R
Type of Duty: S 2 - 5 min
Degree of Protection: IP 50
Weight: approx. 0.45 kg

AHC with Hall sensor

12 V

- **Part number**: 0 390 201 927
- **Nominal voltage**: $U_n = 12$ V
- **Nominal current**: $I_n < 4$ A
- **Maximum current**: $I_{\text{max}} = 17$ A
- **Nominal force**: $F_n = 500$ N
- **Maximum force**: $F_{\text{max}} = 2800$ N
- **Adjustment speed**: $v_n = 5$ mm/s
- **Degree of protection**: IP 50
- **Weight**: approx. 0.55 kg

Clockwise: (+) to II, (-) to I
Anti-clockwise: (+) to I, (-) to II

A square-wave period is generated for each turn of the armature.

Part Number: 0 390 201 927
Nominal Voltage: 12 V
Nominal Current: < 4 A
Maximum Current: 17 A
Nominal Force: 500 N
Maximum Force: 2800 N
Adjustment Speed: 5 mm/s
Degree of Protection: IP 50
Weight: approx. 0.55 kg

X Suitable coupling connector: Housing Tyco No. 0-968 182-1
AHC
Actuator motor with spindle

12 V

- **Part number**: 0 390 201 941
- **Nominal voltage**: $U_n = 12\, \text{V}$
- **Nominal current**: $I_{\text{n}} < 6\, \text{A}$
- **Maximum current**: $I_{\text{max}} = 23\, \text{A}$
- **Nominal force**: $F_n = 500\, \text{N}$
- **Maximum force**: $F_{\text{max}} = 3200\, \text{N}$
- **Adjustment speed**: $v_A = 7\, \text{mm/s}$
- **Degree of protection**: IP 50
- **Weight**: approx. 0.54 kg

Clockwise: (+) to I
Anti-clockwise: (−) to II

AHC

12 V 8 W

- **Part number**: 0 390 201 944
- **Nominal voltage**: $U_n = 12\, \text{V}$
- **Nominal power**: $P_n = 8\, \text{W}$
- **Nominal current**: $I_{\text{n}} < 8\, \text{A}$
- **Maximum current**: $I_{\text{max}} = 24\, \text{A}$
- **Nominal speed**: $n_n = 26\, \text{min}^{-1}$
- **Nominal torque**: $M_n = 3\, \text{Nm}$
- **Breakaway torque**: $M_{\text{b}} > 19\, \text{Nm}$
- **Reduction**: $i = 185.5 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.45 kg

Clockwise: (+) to 1
Anti-clockwise: (−) to 2
AHC with Hall sensor

12 V 6.3 W

- **Part number**: 0 390 201 972
- **Nominal voltage**: $U_n = 12 \text{ V}$
- **Nominal power**: $P_n = 6.3 \text{ W}$
- **Nominal current**: $I_n < 6 \text{ A}$
- **Maximum current**: $I_{max} = 15 \text{ A}$
- **Nominal speed**: $n_n = 20 \text{ min}^{-1}$
- **Nominal torque**: $M_n = 3 \text{ Nm}$
- **Breakaway torque**: $M_s > 17.5 \text{ Nm}$
- **Reduction**: $i = 185.5 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.49 kg

Clockwise: (+) to 1
Anti-clockwise: (+) to 3

AHC

12 V 6.3 W

- **Part number**: 0 390 201 973
- **Nominal voltage**: $U_n = 12 \text{ V}$
- **Nominal power**: $P_n = 6.3 \text{ W}$
- **Nominal current**: $I_n < 6 \text{ A}$
- **Maximum current**: $I_{max} = 15 \text{ A}$
- **Nominal speed**: $n_n = 20 \text{ min}^{-1}$
- **Nominal torque**: $M_n = 3 \text{ Nm}$
- **Breakaway torque**: $M_s > 17.5 \text{ Nm}$
- **Reduction**: $i = 185.5 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.49 kg

Clockwise: (+) to 1
Anti-clockwise: (+) to 3
AHC

with Hall sensor

Actuator motor with spindle

12 V

- **Part number**: 0 390 201 989
- **Nominal voltage**: $U_n = 12$ V
- **Nominal current**: $I_n < 8.5$ A
- **Maximum current**: $I_{max} = 24$ A
- **Nominal force**: $F_n = 1000$ N
- **Maximum force**: $F_{max} = 3500$ N
- **Adjustment speed**: $v_a = 6$ mm/s
- **Degree of protection**: IP 50
- **Weight**: approx. 0.57 kg

Clockwise: (+) to 3, (-) to 1

Anti-clockwise: (+) to 1, (-) to 3

12 V 10 W

- **Part number**: 0 390 201 997
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 10$ W
- **Nominal current**: $I_n < 4$ A
- **Maximum current**: $I_{max} = 15$ A
- **Nominal speed**: $n_0 = 115$ min$^{-1}$
- **Nominal torque**: $M_n = 0.85$ Nm
- **Breakaway torque**: $M_0 > 3.5$ Nm
- **Reduction**: $i = 29 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.55 kg

Clockwise: (+) to 3

Anti-clockwise: (+) to 1
AHC

12 V 6.3 W

- **Part number**: 0 390 201 999
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 6.3$ W
- **Nominal current**: $I_n < 6$ A
- **Maximum current**: $I_{max} = 15$ A
- **Nominal speed**: $n_n = 20$ min$^{-1}$
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_i > 19$ Nm
- **Reduction**: $i = 185.5 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.49 kg

Diagram

Clockwise: (+) to 1
Anti-clockwise: (+) to 3

12 V 5 W

- **Part number**: 0 390 203 224
 - mirror-image: 0 390 203 225
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 5$ W
- **Nominal current**: $I_n < 4.5$ A
- **Maximum current**: $I_{max} = 14$ A
- **Nominal speed**: $n_n = 16$ min$^{-1}$
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_i > 19$ Nm
- **Reduction**: $i = 217 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.50 kg

Diagram

Clockwise: (+) to II
Anti-clockwise: (+) to I
AHC

with Hall sensor

12 V 5 W

- Part number: 0 390 203 226
- Mirror-image: 0 390 203 227
- Nominal voltage: $U_n = 12 \text{ V}$
- Nominal current: $I_n < 4.5 \text{ A}$
- Maximum current: $I_{\text{max}} = 14 \text{ A}$
- Nominal speed: $n_n = 16 \text{ min}^{-1}$
- Nominal torque: $M_n = 3 \text{ Nm}$
- Breakaway torque: $M_{\text{br}} > 22 \text{ Nm}$
- Reduction: $i = 217:1$
- Direction of rotation: L/R
- Type of duty: S 2 - 5 min
- Degree of protection: IP 50
- Weight: approx. 0.5 kg

Clockwise: (+) to II
Anti-clockwise: (+) to I

AHC

Actuator motor with spindle

12 V

- Part number: 0 390 203 229
- Nominal voltage: $U_n = 12 \text{ V}$
- Nominal current: $I_n < 13 \text{ A}$
- Maximum current: $I_{\text{max}} = 28 \text{ A}$
- Nominal force: $F_n = 1000 \text{ N}$
- Maximum force: $F_{\text{max}} = 2500 \text{ N}$
- Adjustment speed: $v_a = 10 \text{ mm/s}$
- Degree of protection: IP 50
- Weight: approx. 0.64 kg

Clockwise: 3 to (+), 1 to (-)
Anti-clockwise: 1 to (+), 3 to (-)
AHC

12 V 11 W

Part number: 0 390 203 306

- Mirror-image: 0 390 203 307

Nominal voltage: $U_n = 12\text{ V}$

- Nominal power: $P_n = 11\text{ W}$

- Nominal current: $I_n < 6\text{ A}$

- Maximum current: $I_{\text{max}} = 14\text{ A}$

- Nominal speed: $n_n = 17\text{ min}^{-1}$

- Nominal torque: $M_n = 6\text{ Nm}$

- Breakaway torque: $M_{\text{br}} > 23.9\text{ Nm}$

- Reduction: $i = 217 : 1$

- Direction of rotation: R/L

- Type of duty: S 2

- Degree of protection: IP 50

- Weight: approx. 0.50 kg

Clockwise: (+) to II, (-) to I

Anti-clockwise: (+) to I, (-) to II

AHC with Hall sensor

12 V 11 W

Part number: 0 390 203 308

- Mirror-image: 0 390 203 309

Nominal voltage: $U_n = 12\text{ V}$

- Nominal power: $P_n = 11\text{ W}$

- Nominal current: $I_n < 6\text{ A}$

- Maximum current: $I_{\text{max}} = 14\text{ A}$

- Nominal speed: $n_n = 17\text{ min}^{-1}$

- Nominal torque: $M_n = 6\text{ Nm}$

- Breakaway torque: $M_{\text{br}} > 23.9\text{ Nm}$

- Reduction: $i = 217 : 1$

- Direction of rotation: R/L

- Type of duty: S 2

- Degree of protection: IP 50

- Weight: approx. 0.50 kg

Clockwise: (+) to II, (-) to I

Anti-clockwise: (+) to I, (-) to II
AHC

24 V 5 W

- **Part number**: 0 390 203 310
- **Mirror-image**: 0 390 203 311
- **Nominal voltage**: $U_n = 24$ V
- **Nominal power**: $P_n = 5$ W
- **Nominal current**: $I_n < 2.3$ A
- **Maximum current**: $I_{max} = 7$ A
- **Nominal speed**: $n_n = 16$ min$^{-1}$
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_\text{br} > 23.3$ Nm
- **Reduction**: $i = 217 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.50 kg

Clockwise: (+) to II, (-) to I
Anti-clockwise: (+) to I, (-) to II

AHC with Hall sensor

24 V 5 W

- **Part number**: 0 390 203 312
- **Mirror-image**: 0 390 203 313
- **Nominal voltage**: $U_n = 24$ V
- **Nominal power**: $P_n = 5$ W
- **Nominal current**: $I_n < 2.3$ A
- **Maximum current**: $I_{max} = 7$ A
- **Nominal speed**: $n_n = 16$ min$^{-1}$
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_\text{br} > 22$ Nm
- **Reduction**: $i = 217 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S 2 - 5 min
- **Degree of protection**: IP 50
- **Weight**: approx. 0.50 kg

Clockwise: (+) to II, (-) to I
Anti-clockwise: (+) to I, (-) to II

On request
AHC

24 V 29 W

- Part number: 0 390 203 314
- Nominal voltage: $U_n = 24$ V
- Nominal power: $P_n = 29$ W
- Nominal current: $I_n < 5$ A
- Maximum current: $I_{max} = 15$ A
- Nominal speed: $n_n = 700$ min⁻¹
- Nominal torque: $M_n = 0.4$ Nm
- Breakaway torque: $M_s > 1.85$ Nm
- Direction: R/L
- Type of duty: S 2
- Degree of protection: IP 50
- Weight: approx. 0.40 kg

Clockwise: (+) to II, (-) to I
Anti-clockwise: (+) to I, (-) to II

AHC with Hall sensor

24 V 29 W

- Part number: 0 390 203 316
- Mirror-image: 0 390 203 317
- Nominal voltage: $U_n = 24$ V
- Nominal power: $P_n = 29$ W
- Nominal current: $I_n < 5$ A
- Maximum current: $I_{max} = 15$ A
- Nominal speed: $n_n = 700$ min⁻¹
- Nominal torque: $M_n = 0.4$ Nm
- Breakaway torque: $M_s > 1.85$ Nm
- Direction: R/L
- Type of duty: S 2
- Degree of protection: IP 50
- Weight: approx. 0.40 kg

Clockwise: (+) to II, (-) to I
Anti-clockwise: (+) to I, (-) to II
AHC
optional Hall sensor available

AHC
with Hall sensor
12 V

- **Part number**: 0 390 204 027
- **Nominal voltage**: $U_n = 12$ V
- **Nominal current**: $I_n = 8$ A
- **Maximum current**: $I_{\text{max}} = 24$ A
- **Maximum force**: $F_{\text{max}} = 4100$ N
- **Adjustment speed**: $v_n = 8$ mm/s
- **Type of duty**: S_3
- **Degree of protection**: IP 50
- **Weight**: approx. 0.52 kg

Clockwise: (+) to 1, (-) to 3
Counterclockwise: (+) to 3, (-) to 1

NSA-MS

- **Part number**: 0 390 204 027
- **Nominal voltage**: $U_n = 12$ V
- **Nominal current**: $I_n = 8$ A
- **Maximum current**: $I_{\text{max}} = 24$ A
- **Maximum force**: $F_{\text{max}} = 4100$ N
- **Adjustment speed**: $v_n = 8$ mm/s
- **Type of duty**: S_3
- **Degree of protection**: IP 50
- **Weight**: approx. 0.52 kg

Clockwise: (+) to 1, (-) to 3
Counterclockwise: (+) to 3, (-) to 1
FPG 2

12 V 21 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 130 822 488</td>
</tr>
<tr>
<td>Mirror-image</td>
<td>0 130 822 489</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>21 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>11 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>34 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>74 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>2.7 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>13.5 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>73 : 1</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 2</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 53</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.59 kg</td>
</tr>
</tbody>
</table>

Clockwise: II on (+), I on (-)
Anti-clockwise: I on (+), II on (-)

FPG 2

24 V 21 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 130 822 490</td>
</tr>
<tr>
<td>Mirror-image</td>
<td>0 130 822 491</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>21 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>11 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>34 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>74 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>2.7 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>13.5 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>73 : 1</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 2</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 53</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.59 kg</td>
</tr>
</tbody>
</table>

Clockwise: II on (+), I on (-)
Anti-clockwise: I on (+), II on (-)
FPG 2
with Hall sensor

12 V 21 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 130 822 492</td>
</tr>
<tr>
<td>mirror-image</td>
<td>0 130 822 493</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>U_n 12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n 21 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n 11 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>I_{max} 34 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n 74 min^{-1}</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n 2.7 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_1 13.5 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>i 73 : 1</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 2</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 53</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.59 kg</td>
</tr>
</tbody>
</table>

Clockwise: I on (+), II on (-)
Anti-clockwise: II on (+), I on (-)

FPG 2
with Hall sensor

24 V 21 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 130 822 494</td>
</tr>
<tr>
<td>mirror-image</td>
<td>0 130 822 495</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>U_n 24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n 21 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n 11 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>I_{max} 34 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n 74 min^{-1}</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n 2.7 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_1 13.5 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>i 73 : 1</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 2</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 53</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.59 kg</td>
</tr>
</tbody>
</table>

Clockwise: I on (+), II on (-)
Anti-clockwise: II on (+), I on (-)
CHP

24 V 57 W

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 390 257 693</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>57 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>3.5 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>16 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>90 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>4.5 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>16 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>52 : 2</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.10 kg</td>
</tr>
</tbody>
</table>

Clockwise: (-) at gn terminal (green)
Anti-clockwise: (+) to red, (-) to green.

12 V 14 W

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>F 006 B20 092</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>14 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>6.1 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>27 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>49 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>2.7 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>27 Nm</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.10 kg</td>
</tr>
</tbody>
</table>

Clockwise: (+) to red, (-) to green
Anti-clockwise: (+) to green, (-) to red.
C H P

12 V 42 W

Part number F 006 B20 093
Nominal voltage U_n 12 V
Nominal power P_n 42 W
Nominal current I_n 9.4 A
Maximum current I_{max} 45 A
Nominal speed n_n 135 min$^{-1}$
Nominal torque M_n 3 Nm
Breakaway torque M_{br} 17.5 Nm
Reduction i 52 : 2
Direction of rotation L/R
Type of duty S 1
Degree of protection IP 23
Weight approx. 1.10 kg
Similar part number 0 390 251 684

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green
On request

C H P

24V 13W

Part number F 006 B20 095
Nominal voltage U_n 24 V
Nominal power P_n 13 W
Nominal current I_n 1.9 A
Maximum current I_{max} 8 A
Nominal speed n_n 46 min$^{-1}$
Nominal torque M_n 2.5 Nm
Breakaway torque M_{br} 25 Nm
Reduction i 55 : 1
Direction of rotation L/R
Type of duty S 1
Degree of protection IP 23
Weight approx. 1.20 kg
Similar part number 0 390 257 699

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green
CHP

24V 12W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>F 006 B20 096</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>$U_n = 24$ V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>$P_n = 12$ W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>$I_n = 2.7$ A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>$I_{max} = 11$ A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>$n_n = 40$ min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>$M_n = 2.9$ Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>$M_{br} = 29$ Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>$i = 55 : 1$</td>
</tr>
<tr>
<td>Type of duty</td>
<td>$S \ 1$</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.20 kg</td>
</tr>
</tbody>
</table>

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green

24V 16.6 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>F 006 B20 097</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>$U_n = 24$ V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>$P_n = 16.6$ W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>$I_n = 5.3$ A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>$I_{max} = 21$ A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>$n_n = 66$ min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>$M_n = 2.4$ Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>$M_{br} = 24$ Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>$i = 69 : 1$</td>
</tr>
<tr>
<td>Type of duty</td>
<td>$S \ 1$</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.20 kg</td>
</tr>
<tr>
<td>Similar part number</td>
<td>0 390 257 685</td>
</tr>
</tbody>
</table>

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green

On request

Bosch Automotive Aftermarket

2013 | 2014
CHP

24V 26W

- Part number: F 006 B20 098
- Nominal voltage: $U_n = 24\,\text{V}$
- Nominal power: $P_n = 22\,\text{W}$
- Nominal current: $I_n = 4\,\text{A}$
- Maximum current: $I_{\text{max}} = 17\,\text{A}$
- Nominal torque: $M_n = 5\,\text{Nm}$
- Breakaway torque: $M_s = 27\,\text{Nm}$
- Reduction: $i = 55 : 1$
- Direction of rotation: L/R
- Type of duty: S 1
- Degree of protection: IP 23
- Weight: approx. 1.00 kg
- Similar part number: 0 390 257 690

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green

CHP

24 V 18 W

- Part number: F 006 B20 099
- Nominal voltage: $U_n = 24\,\text{V}$
- Nominal power: $P_n = 18\,\text{W}$
- Nominal current: $I_n = 4\,\text{A}$
- Maximum current: $I_{\text{max}} = 15\,\text{A}$
- Nominal speed: $n_0 = 122\,\text{min}^{-1}$
- Nominal torque: $M_n = 1.4\,\text{Nm}$
- Breakaway torque: $M_s = 14\,\text{Nm}$
- Reduction: $i = 52 : 2$
- Direction of rotation: L/R
- Type of duty: S 1
- Degree of protection: IP 23
- Weight: approx. 1.10 kg
- Similar part number: 0 390 257 694

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green
CHP

24 V 29 W

- **Part number**: F 006 B20 100
- **Nominal voltage**: $U_n = 24$ V
- **Nominal power**: $P_n = 29$ W
- **Nominal current**: $I_n = 3.3$ A
- **Maximum current**: $I_{max} = 14$ A
- **Nominal speed**: $n_n = 94$ min$^{-1}$
- **Nominal torque**: $M_n = 3$ Nm
- **Breakaway torque**: $M_b = 20$ Nm
- **Reduction**: $i = 52 : 2$
- **Direction of rotation**: L/R
- **Type of duty**: S 1
- **Degree of protection**: IP 23
- **Weight**: approx. 1,00 kg
- **Similar part number**: 0 390 257 687

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green

24 V 19 W

- **Part number**: F 006 B20 101
- **Nominal voltage**: $U_n = 24$ V
- **Nominal power**: $P_n = 19$ W
- **Nominal current**: $I_n = 3.3$ A
- **Maximum current**: $I_{max} = 14.5$ A
- **Nominal speed**: $n_n = 113$ min$^{-1}$
- **Nominal torque**: $M_n = 1.6$ Nm
- **Breakaway torque**: $M_b = 16$ Nm
- **Reduction**: $i = 52 : 2$
- **Direction of rotation**: L/R
- **Type of duty**: S 1
- **Degree of protection**: IP 23
- **Weight**: approx. 1,10 kg
- **Similar part number**: 0 390 257 693

Clockwise: (+) to green, (-) to brown
Anti-clockwise: (+) to brown, (-) to green
CHP

24V 24W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>F 006 B20 102</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>24 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>4.5 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>18 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>174 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>1.3 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>13 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>52 : 2</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.10 kg</td>
</tr>
<tr>
<td>Similar part number</td>
<td>0 390 257 691</td>
</tr>
</tbody>
</table>

Clockwise: (+) to green, (-) to brown
Counterclockwise: (+) to brown, (-) to green

CHP

24V 16W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>F 006 B20 103</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>36 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>5.8 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>31 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>177 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>1.9 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>19 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>52 : 2</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.10 kg</td>
</tr>
<tr>
<td>Similar part number</td>
<td>0 390 257 688</td>
</tr>
</tbody>
</table>

Clockwise: (+) to green, (-) to brown
Counterclockwise: (+) to brown, (-) to green
24 V 16 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>F 006 B20 106</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>$U_n = 24$ V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>$P_n = 16$ W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>$I_n = 4.9$ A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>$I_{max} = 14.5$ A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>$n_n = 47$ min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>$M_n = 3.3$ Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>$M_{br} = 33$ Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>$i = 79 : 1$</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 23</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.30 kg</td>
</tr>
</tbody>
</table>

Clockwise: green to (+), brown to (-)

Anti-clockwise: brown to (+), green to (-)

S connector: DIN 46 340-B6,3-MS
WSM3-IK

24 V 35 W

Part number F 006 B20 412
Mirror-image F 006 B20 413
Nominal voltage $U_n =$ 24 V
Nominal power $P_n =$ 35 W
Nominal current $I_n =$ 6.5 A
Maximum current $I_{max} =$ 12.5 A
Nominal speed $n_n =$ 55 min$^{-1}$
Nominal torque $M_n =$ 6 Nm
Breakaway torque $M_t =$ 30 Nm
Reduction $i =$ 1 : 88
Direction of rotation R/L
Type of duty S1
Degree of protection IP30
Weight approx. 0.98 kg

Clockwise: B on (+), A on (-)
Counterclockwise: A on (+), B on (-)

WSM3-IK with Hall sensor

24 V 35 W

Part number F 006 B20 410
Mirror-image F 006 B20 411
Nominal voltage $U_n =$ 24 V
Nominal power $P_n =$ 35 W
Nominal current $I_n =$ 6.5 A
Maximum current $I_{max} =$ 12.5 A
Nominal speed $n_n =$ 55 min$^{-1}$
Nominal torque $M_n =$ 6 Nm
Breakaway torque $M_t =$ 30 Nm
Reduction $i =$ 1 : 88
Direction of rotation R/L
Type of duty S1
Degree of protection IP30
Weight approx. 0.98 kg

Clockwise: B on (+), A on (-)
Counterclockwise: A on (+), B on (-)
EFP

12 V

- **Part number**: 0 986 337 400
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 8/13.6$ W
- **Nominal current**: $I_n = 2.4/4$ A
- **Maximum current**: $I_{\text{max}} = 21/27$ A
- **Nominal speed**: $n_n = 32/48$ min$^{-1}$
- **Nominal torque**: $M_n = 2.5/2.5$ Nm
- **Breakaway torque**: $M_s = 45/35$ Nm
- **Reduction**: $i = 80 : 2$
- **Direction of rotation**: L
- **Type of duty**: S1
- **Degree of protection**: 33
- **Weight**: approx. 2.90 kg

Clockwise: 3 on (+), 1 on (+)
Anti-clockwise: 1 on (+), 3 on (+)

24 V

- **Part number**: 0 986 337 401
- **Nominal voltage**: $U_n = 24$ V
- **Nominal power**: $P_n = 10/15$ W
- **Nominal current**: $I_n = 1.4/2.5$ A
- **Maximum current**: $I_{\text{max}} = 13/20$ A
- **Nominal speed**: $n_n = 35/51$ min$^{-1}$
- **Nominal torque**: $M_n = 3/3$ Nm
- **Breakaway torque**: $M_s = 55/48$ Nm
- **Reduction**: $i = 80 : 2$
- **Direction of rotation**: L
- **Type of duty**: S1
- **Degree of protection**: IP33
- **Weight**: approx. 2.90 kg

Clockwise: 3 on (+), 1 on (+)
Anti-clockwise: 1 on (+), 3 on (+)
EFP

24 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 986 337 409</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>56 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>9 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>36 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>60 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>10 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>70 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>80 : 2</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP33</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 2.90 kg</td>
</tr>
</tbody>
</table>

Clockwise: 5 on (-), 1 on (+)
Anti-clockwise: 1 on (-), 5 on (+)

EFP

24 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 986 337 410</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>67 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>10 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>42 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>75 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>10 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>70 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>80 : 2</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP33</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 2.90 kg</td>
</tr>
</tbody>
</table>

Clockwise: 5 on (-), 1 on (+)
Anti-clockwise: 1 on (-), 5 on (+)
24 V

- **Part number**: 0 986 337 402
- **Nominal voltage**: $U_n = 24$ V
- **Nominal power**: $P_1 = 18.43$ W
- **Nominal current**: $I_n = 3$ A
- **Maximum current**: $I_{max} = 17$ A
- **Nominal speed**: $n_n = 44$ min$^{-1}$
- **Nominal torque**: $M_n = 4$ Nm
- **Breakaway torque**: $M_b = 70$ Nm
- **Reduction**: $i = 65 : 1$
- **Direction of rotation**: L/R
- **Type of duty**: S1
- **Degree of protection**: IP33
- **Weight**: approx. 2.90 kg

Clockwise: 3 on (-), 1 on (+)
Anti-clockwise: 1 on (-), 3 on (+)
WDD - Direct Drive
Control the speed, rotation, strokes and rotation angle with precision!

Product description
The WDD is an electronically controlled motor with integrated ECU with the singularity of being customized - control the speed, rotation, strokes and rotation angle with precision! Ideal for passenger cars and Off-Highway Industry it can drive i.e. a wiper directly but it can be used also for the Industrial customers. The integrated ECU needs customer specific software and this software adaptation can be done at Bosch.

Operation
The drive receives requests via a LIN bus interface and is speed and position controlled. The controller thereby follows one of the set point position characteristic curves stored in the software of the integrated ECU.

Product features
- PWM driven DC motor
- Close loop control (PID) based on a contactless angular sensor
- Programmable angles, speeds and powerInterface: LIN 2.0
- Synchronization between two drives possible (Master-Slave)
- Powerful (torque ≤ 34Nm)
- Fulfillment of new EMC requirements (Bluetooth, DVB-T, UMTS, etc.)

The terminal voltage of the drive is adjusted in pulse-width modulated manner via an H-bridge-power-stage in a close loop control (PID) based on the integrated angular sensor.

Notes on fixation bracket:
For the WDD fixation a special bracket is needed (for vibration and noise reduction). This bracket should be designed and sourced by the customer.
WDD

with Hall sensor/
illustration similar

<table>
<thead>
<tr>
<th>12 V 22 W</th>
<th>Part number</th>
<th>0 390 248 016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>U_n</td>
<td>12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n</td>
<td>22 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n</td>
<td>2.9 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>I_{max}</td>
<td>19 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n</td>
<td>53 min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n</td>
<td>4 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_s</td>
<td>38 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>i</td>
<td>$1 : 76$</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td></td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td></td>
<td>$S1$</td>
</tr>
<tr>
<td>Degree of protection</td>
<td></td>
<td>$IP6K7$</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>approx. 1.33 kg</td>
</tr>
</tbody>
</table>

WDD

with Hall sensor

<table>
<thead>
<tr>
<th>12 V 22 W</th>
<th>Part number</th>
<th>0 390 248 015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>U_n</td>
<td>12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n</td>
<td>22 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n</td>
<td>2.9 A</td>
</tr>
<tr>
<td>Maximum current</td>
<td>I_{max}</td>
<td>19 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n</td>
<td>53 min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n</td>
<td>4 Nm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_s</td>
<td>38 Nm</td>
</tr>
<tr>
<td>Reduction</td>
<td>i</td>
<td>$1 : 76$</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td></td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td></td>
<td>$S1$</td>
</tr>
<tr>
<td>Degree of protection</td>
<td></td>
<td>$IP6K7$</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>approx. 1.25 kg</td>
</tr>
</tbody>
</table>

D.C. motors with transmission | 41

Bosch Automotive Aftermarket
As comfort requirements on air conditioners increase and the resulting number of air flaps also increase, the number of air-flap actuators also rises. Modern vehicles are equipped with 4–16 air-flap actuators.

Technology

The flap actuator consists of a permanently-excited D.C. motor and a transmission. The mechanical angle of rotation can be limited by means of stops attached to the housing. The electrical connector is designed for the AMP Micro Quadlock system.

VMC modular system with:
- Standard on/off switching
- Integrated potentiometer
- Automatic limit stop
- Output consumption for different positioning elements

Product features
- Nominal torque = 0.35 – 0.4 Ncm
- Breakaway torque = 0.7 – 1.2 Ncm
- Nominal speed = 4.5 – 7.0 rpm (min⁻¹)
- Nominal voltage = 12/24 V – 1.2 Ncm

In many applications outside the automobile too, exact flap and valve positioning is required. This is why Bosch VMC motors are ideal for your concept.

Application examples

The VMC air-flap positioner is used for positioning flaps during climate control in automobiles. It is also ideally suited for industrial applications such as valve positioning for water, oil, gas or for instance, for proportioning air quantities in solariums. Bring your idea and application along to us. Together we will get your project moving – with electric motors from Bosch.
VMC

with potentiometer

24 V 0.22 W

<table>
<thead>
<tr>
<th>Part number</th>
<th>0 132 801 141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage U_n</td>
<td>24 V</td>
</tr>
<tr>
<td>Nominal power P_n</td>
<td>0.22 W</td>
</tr>
<tr>
<td>Nominal current I_n</td>
<td>\leq 55 mA</td>
</tr>
<tr>
<td>Maximum current I_{max}</td>
<td>250 mA</td>
</tr>
</tbody>
</table>

Nominal speed n_0 6 min$^{-1}$
Nominal torque M_n 40 Ncm
Breakaway torque M_s \geq 140 Ncm
Reduction i 40S : 1
Direction of rotation L/R

Shaft load max. axial F_x \leq 30 N
Shaft load max. radial F_r \leq 50 N
Type of duty S 1
Degree of protection IP 54
Weight approx. 0.12 kg

Clockwise: 4 to (+), 6 to (–)
Anti-clockwise: 6 to (+), 4 to (–)

12 V 0.29 W

<table>
<thead>
<tr>
<th>Part number</th>
<th>0 132 801 142</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage U_n</td>
<td>12 V</td>
</tr>
<tr>
<td>Nominal power P_n</td>
<td>0.29 W</td>
</tr>
<tr>
<td>Nominal current I_n</td>
<td>\leq 180 mA</td>
</tr>
</tbody>
</table>

Maximum current I_{max} 400 mA
Nominal speed n_0 7 min$^{-1}$
Nominal torque M_n 40 Ncm
Breakaway torque M_s \geq 90 Ncm
Reduction i 310 : 1
Direction of rotation L/R

Shaft load max. axial F_x \leq 30 N
Shaft load max. radial F_r \leq 50 N
Type of duty S 1
Degree of protection IP 40
Weight approx. 0.12 kg

Clockwise: 1 to (+), 3 to (–)
Anti-clockwise: 1 to (–), 3 to (+)
VMC

24 V 0.26 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 132 801 143</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>U_n 24 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n 0.26 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n ≤ 100 mA</td>
</tr>
<tr>
<td>Maximum current</td>
<td>I_{max} 200 mA</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n 7 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n 35 Ncm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_{br} ≥ 90 Ncm</td>
</tr>
<tr>
<td>Reduction</td>
<td>i 310 : 1</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Shaft load max. axial</td>
<td>F_a ≤ 30 N</td>
</tr>
<tr>
<td>Shaft load max. radial</td>
<td>F_r ≤ 50 N</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.12 kg</td>
</tr>
</tbody>
</table>

Clockwise: 1 to (+), 3 to (–)
Anti-clockwise: 1 to (–), 3 to (+)

VMC

12 V 0.16 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 132 801 346</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>U_n 12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n 0.16 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n ≤ 150 mA</td>
</tr>
<tr>
<td>Maximum current</td>
<td>I_{max} ≤ 270 mA</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n 4.5 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n 35 Ncm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_{br} ≥ 120 Ncm</td>
</tr>
<tr>
<td>Reduction</td>
<td>i 450 : 1</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Shaft load max. axial</td>
<td>F_a ≤ 30 N</td>
</tr>
<tr>
<td>Shaft load max. radial</td>
<td>F_r ≤ 50 N</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 50</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.09 kg</td>
</tr>
</tbody>
</table>

Clockwise: 1 to (+), 3 to (–)
Anti-clockwise: 1 to (–), 3 to (+)
VMC

with potentiometer

12 V 0.16 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 132 801 347</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>$U_n = 12$ V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>$P_n = 0.16$ W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>$I_n \leq 150$ mA</td>
</tr>
<tr>
<td>Maximum current</td>
<td>$I_{max} \leq 270$ mA</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>$n_n = 4.5$ min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>$M_n = 35$ Ncm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>$M_{br} \geq 120$ Ncm</td>
</tr>
<tr>
<td>Reduction</td>
<td>$i = 450 : 1$</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Shaft load max. axial</td>
<td>$F_s \leq 30$ N</td>
</tr>
<tr>
<td>Shaft load max. radial</td>
<td>$F_r \leq 50$ N</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 50</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.09 kg</td>
</tr>
</tbody>
</table>

Plug housing Tyco-No. 1355082-1. Terminal housing PN Tyco-No. 928 999
The Bosch D.C. motors without transmission referred to here are permanent-magnet D.C. motors developed for use in motor vehicles. They excel on account of an excellent power/weight ratio, and a broad working range in different requirements and installation situations.

Bosch electric motors without transmission are typically used in motor vehicles as a motor for heater or air-conditioning devices or for power-seat adjustment. The installation position can vary arbitrarily from horizontal to vertical. Bosch electric motors without transmission, are also the suitable solution for many applications outside the automobile.

Application examples

Automotive technology:
Heater and air-conditioning blowers, engine cooling, power-seat adjustment

Industrial applications:
Electric mopeds, sweeping machines and lots more

Product features

- Wide range of permanent-magnet D.C. motor products
- D.C. voltage range from 12 to 24 Volt
- Nominal speed range from 2840 to 5000 rpm (min⁻¹)
- $P_{\text{output max.}} = 180 - 300$ W

Advantages for your application

- Robust and reliable quality, well-proven in many millions of motor vehicles
- High reliability and service life
- A multitude of different sizes and designs for greater flexibility
- Favorable price/performance ratio
API

12 V 29 W

Part number 0 130 002 525

- **Nominal voltage** U_n 12 V
- **Nominal power** P_n 29 W
- **Nominal current** I_n 7.0 A
- **Nominal speed** n_n 3100 min$^{-1}$
- **Nominal torque** M_n 9 Ncm
- **Breakaway torque** M_{br} 31 Ncm
- **Direction of rotation** L/R
- **Type of duty** S 3 - 15 %
- **Degree of protection** IP 50 A
- **Weight** approx. 0.44 kg

Clockwise: I to term (+), II to term (–)
Anti-clockwise: I to term (–), II to term (+)

API

with Hall sensor

12 V 29 W

Part number 0 130 002 527

- **Nominal voltage** U_n 12 V
- **Nominal power** P_n 29 W
- **Nominal current** I_n 7.0 A
- **Nominal speed** n_n 3100 min$^{-1}$
- **Nominal torque** M_n 9 Ncm
- **Breakaway torque** M_{br} 31 Ncm
- **Direction of rotation** L/R
- **Type of duty** S 3 - 15 %
- **Degree of protection** IP 50 A
- **Weight** approx. 0.44 kg

Clockwise: I to term (+), II to term (–)
Anti-clockwise: I to term (–), II to term (+)
API

12 V 46 W

- **Part number**: 0 130 002 529
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 46$ W
- **Nominal current**: $I_n = 9.0$ A
- **Nominal speed**: $n_n = 2900$ min$^{-1}$
- **Nominal torque**: $M_n = 15$ Ncm
- **Breakaway torque**: $M_{ab} = 48.5$ Ncm
- **Direction of rotation**: L/R
- **Type of duty**: S 3 - 15 %
- **Degree of protection**: IP 50
- **Weight**: approx. 0.44 kg

Clockwise: I to term (+), II to term (–)
Anti-clockwise: I to term (–), II to term (+)

API with Hall sensor

12 V 46 W

- **Part number**: 0 130 002 530
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 46$ W
- **Nominal current**: $I_n = 9.0$ A
- **Nominal speed**: $n_n = 2900$ min$^{-1}$
- **Nominal torque**: $M_n = 15$ Ncm
- **Breakaway torque**: $M_{ab} = 48.5$ Ncm
- **Direction of rotation**: L/R
- **Type of duty**: S 3 - 15 %
- **Degree of protection**: IP 50
- **Weight**: approx. 0.44 kg

Clockwise: I to term (+), II to term (–)
Anti-clockwise: I to term (–), II to term (+)
API

24 V 25 W

- **Part number**: 0 130 002 562
- **Nominal voltage**: $U_n = 24\,\text{V}$
- **Nominal power**: $P_n = 25\,\text{W}$
- **Nominal current**: $I_n = 2.7\,\text{A}$
- **Nominal speed**: $n_n = 2950\,\text{min}^{-1}$
- **Nominal torque**: $M_n = 8\,\text{Ncm}$
- **Breakaway torque**: $M_s = 30\,\text{Ncm}$
- **Direction of rotation**: L/R
- **Type of duty**: S 3 - 15 %
- **Degree of protection**: IP 50
- **Weight**: approx. 0.55 kg

Clockwise: red (rt) to term (+), brown (br) to term (–)

Anti-clockwise: red (rt) to term (–), brown (br) to term (+)

12 V 29.2 W

- **Part number**: 0 130 002 613
- **Nominal voltage**: $U_n = 12\,\text{V}$
- **Nominal power**: $P_n = 29.2\,\text{W}$
- **Nominal current**: $I_n = 5.8\,\text{A}$
- **Nominal speed**: $n_n = 2790\,\text{min}^{-1}$
- **Nominal torque**: $M_n = 10\,\text{Ncm}$
- **Breakaway torque**: $M_s = 69\,\text{Ncm}$
- **Direction of rotation**: L/R
- **Type of duty**: S 3 - 15 %
- **Degree of protection**: IP 50
- **Weight**: approx. 0.60 kg

Clockwise: I to term (+) II to term (–)

Anti-clockwise: I to term (–) II to term (+)
API with Hall sensor

12 V 35.2 W

- **Part number**: 0 130 002 632
- **Nominal voltage**: $U_n = 12$ V
- **Nominal power**: $P_n = 35.2$ W
- **Nominal current**: $I_n = 6.8$ A
- **Nominal speed**: $n_n = 3360$ min$^{-1}$
- **Nominal torque**: $M_n = 10$ Ncm
- **Breakaway torque**: $M_a = 49$ Ncm
- **Direction of rotation**: L/R
- **Type of duty**: S 3 - 15 %
- **Degree of protection**: IP 50
- **Weight**: approx. 0.45 kg

- **Clockwise**: I to term (+), II to term (–)
- **Anti-clockwise**: I to term (–), II to term (+)
API

with Hall sensor

12 V 36.4 W

- Part number: 0 130 002 634
- Nominal voltage: $U_n = 12$ V
- Nominal power: $P_n = 36.4$ W
- Nominal current: $I_n = 6.3$ A
- Nominal speed: $n_n = 3480$ min$^{-1}$
- Nominal torque: $M_n = 10$ Ncm
- Breakaway torque: $M_b = 62$ Ncm
- Direction of rotation: L/R
- Type of duty: S 3 - 15 %
- Degree of protection: IP 50
- Weight: approx. 0.53 kg

Clockwise: I to term (+), II to term (-)
Anti-clockwise: I to term (-), II to term (+)

API

12 V 29.2 W

- Part number: 0 130 002 636
- Nominal voltage: $U_n = 12$ V
- Nominal power: $P_n = 29.2$ W
- Nominal current: $I_n = 5.8$ A
- Nominal speed: $n_n = 2790$ min$^{-1}$
- Nominal torque: $M_n = 10$ Ncm
- Breakaway torque: $M_b = 69$ Ncm
- Direction of rotation: L/R
- Type of duty: S 3 - 15 %
- Degree of protection: IP 50
- Weight: approx. 0.60 kg

Clockwise: I to term (+), II to term (-)
Anti-clockwise: I to term (-), II to term (+)
API

24 V 46 W

Part number: 0 130 002 671
Nominal voltage: $U_0 = 24$ V
Nominal power: $P_0 = 46$ W
Nominal current: $I_n = 4.5$ A
Nominal speed: $n_s = 2900$ min$^{-1}$
Nominal torque: $M_n = 15$ Ncm
Breakaway torque: $M_s = 66$ Ncm
Direction of rotation: L/R
Type of duty: S 3 - 15%
Degree of protection: IP 50
Weight: approx. 0.57 kg

Clockwise: I to term (+) II to term (-)
Anti-clockwise: I to term (-) II to term (+)

24 V 29.2 W

Part number: 0 130 002 674
Nominal voltage: $U_0 = 24$ V
Nominal power: $P_0 = 29.2$ W
Nominal current: $I_n = 2.9$ A
Nominal speed: $n_s = 2790$ min$^{-1}$
Nominal torque: $M_n = 10$ Ncm
Breakaway torque: $M_s = 65$ Ncm
Direction of rotation: L/R
Type of duty: S 3 - 15%
Degree of protection: IP 50
Weight: approx. 0.60 kg

1) On request
Clockwise: I to term (+) II to term (-)
Anti-clockwise: I to term (-) II to term (+)
NSA-I

Similar to original picture with Hall sensor

12 V 23 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 390 204 092</td>
</tr>
<tr>
<td>Nominal voltage (U_n)</td>
<td>12 V</td>
</tr>
<tr>
<td>Nominal power (P_n)</td>
<td>23 W</td>
</tr>
<tr>
<td>Nominal current (I_n)</td>
<td>5 A</td>
</tr>
<tr>
<td>Nominal speed (n_n)</td>
<td>2000 min⁻¹</td>
</tr>
<tr>
<td>Nominal torque (M_n)</td>
<td>0.11 Nm</td>
</tr>
<tr>
<td>Breakaway torque (M_s)</td>
<td>0.53 Nm</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>L/R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 3</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 50</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.34 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (A)</th>
<th>Speed (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

Part number: 0 390 204 092
Nominal voltage: U_n = 12 V
Nominal power: P_n = 23 W
Nominal current: I_n = 5 A
Nominal speed: n_n = 2000 min⁻¹
Nominal torque: M_n = 0.11 Nm
Breakaway torque: M_s = 0.53 Nm
Direction of rotation: L/R
Type of duty: S 3
Degree of protection: IP 50
Weight: approx. 0.34 kg
CPB

24 V 60 W

- **Part number:** 0 986 338 100
- **Nominal voltage** U_n: 24 V
- **Nominal power** P_n: 60 W
- **Nominal current** I_n: 4.0 A
- **Nominal speed** n_s: 3950 min$^{-1}$
- **Nominal torque** M_n: 15 Ncm
- **Breakaway torque** M_s: 150 Ncm
- **Direction of rotation** L/R
- **Type of duty** S1
- **Weight** approx. 0.80 kg

Clockwise: I on (+) II on (-)

Anti-clockwise: I on (-) II on (+)
DPO-L

Similar to original picture

24 V 185 W

- **Part number**: 0 130 101 516
- **Nominal voltage**: U_n 24 V
- **Nominal power**: P_n 185 W
- **Nominal current**: I_n 12.0 A
- **Nominal speed**: n_n 5000 min⁻¹
- **Nominal torque**: M_n 35 Ncm
- **Breakaway torque**: M_a 250 Ncm
- **Direction of rotation**: R
- **Operating mode**: S 1
- **Degree of protection**: IP 10
- **Weight**: approx. 1.30 kg

Clockwise rotation: I an (+) II an (-)
Counter-clockwise rotation: I an (-) II an (+)

DPO-K

Similar to original picture

24 V 180 W

- **Part number**: 0 130 101 616
- **Nominal voltage**: U_n 24 V
- **Nominal power**: P_n 180 W
- **Nominal current**: I_n 12.5 A
- **Nominal speed**: n_n 4300 min⁻¹
- **Nominal torque**: M_n 40 Ncm
- **Breakaway torque**: M_a 160 Ncm
- **Direction of rotation**: R
- **Operating mode**: S 1
- **Degree of protection**: IP 10
- **Weight**: approx. 1.10 kg

Clockwise rotation: I to (+), II to (-)
Counter-clockwise rotation: I to (-), II to (+)
GPG-M

Similar to original picture

12 V 198 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>3 137 230 005</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>$U_n = 12$ V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>$P_n = 198$ W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>$I_n = 22.0$ A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>$n_n = 2250$ min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>$M_n = 84$ Ncm</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 03</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.60 kg</td>
</tr>
</tbody>
</table>

Clockwise: I to (+), II to (-)
Anti-clockwise: I to (-), II to (+)

On request: contact.i.business@de.bosch.com

GPG-M

Similar to original picture

12 V 274 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>3 137 230 006</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>$U_n = 12$ V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>$P_n = 274$ W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>$I_n = 30.0$ A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>$n_n = 2490$ min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>$M_n = 105$ Ncm</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 03</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.60 kg</td>
</tr>
</tbody>
</table>

Clockwise: I to (+), II to (-)
Anti-clockwise: I to (-), II to (+)

On request: contact.i.business@de.bosch.com
GBM-M

Similar to original picture

12 V 155 W

- **Part number:** 0 130 115 152
- **Nominal voltage:** \(U_n = 12 \text{ V}\)
- **Nominal power:** \(P_n = 155 \text{ W}\)
- **Nominal current:** \(I_n = 19.0 \text{ A}\)
- **Nominal speed:** \(n_n = 4000 \text{ min}^{-1}\)
- **Nominal torque:** \(M_n = 37 \text{ Ncm}\)
- **Breakaway torque:** \(M_a = 200 \text{ Ncm}\)
- **Direction of rotation:** R
- **Type of duty:** S 1
- **Degree of protection:** IP 10
- **Weight:** approx. 1.10 kg

Clockwise: I to (+), II to (-)
Counterclockwise: I to (-), II to (+)

12 V 217 W

- **Part number:** 0 130 115 154
- **Nominal voltage:** \(U_n = 12 \text{ V}\)
- **Nominal power:** \(P_n = 217 \text{ W}\)
- **Nominal current:** \(I_n = 27.6 \text{ A}\)
- **Nominal speed:** \(n_n = 4150 \text{ min}^{-1}\)
- **Nominal torque:** \(M_n = 50 \text{ Ncm}\)
- **Breakaway torque:** \(M_a = 220 \text{ Ncm}\)
- **Direction of rotation:** R
- **Type of duty:** S 1
- **Degree of protection:** IP 10
- **Weight:** approx. 1.10 kg

Clockwise: I to (+), II to (-)
Counterclockwise: I to (-), II to (+)
GBM-L

Similar to original picture

12 V 250 W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 130 115 352</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>U_n 12 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>P_n 250 W</td>
</tr>
<tr>
<td>Nominal current</td>
<td>I_n 28.5 A</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>n_n 4340 min$^{-1}$</td>
</tr>
<tr>
<td>Nominal torque</td>
<td>M_n 55 Ncm</td>
</tr>
<tr>
<td>Breakaway torque</td>
<td>M_b 300 Ncm</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 10</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.40 kg</td>
</tr>
</tbody>
</table>

Clockwise: I to (+), II to (-)
Counterclockwise: I to (-), II to (+)
Blowers with D.C. motors

As the largest manufacturer of electric motors in Europe, Bosch provides a comprehensive range of blower and engine-cooling products for every output range. Our blower range consists of single or multiple-stage suction or pressure blowers. The delivery range encompasses radial and axial-type blowers for 12 V. The blowers are designed for operating mode S1 (continuous operation). The modules are available with brush-type motors or as brushless drives.

The compact design of the modules means that they can be easily installed in areas where space is at a premium.

Product features
- Wide range of blowers
- D.C. voltage range 12 V
- Axial and radial-type blowers available
- RPM control

Advantages for your application
- Low noise development
- High efficiency
- Low weight
- Favorable price/performance ratio

Application examples
Heating, ventilation, air-conditioning and engine cooling, cooler blowers in general
GBM-S
Similar to original picture

12 W

<table>
<thead>
<tr>
<th>Part number</th>
<th>0 130 115 604</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Pressure difference</td>
<td>Δp 470 Pa</td>
</tr>
<tr>
<td>Speed stage II</td>
<td>(n_{\text{max}} = 3510 \ldots 4200 \text{ min}^{-1})</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>R</td>
</tr>
<tr>
<td>Operating mode</td>
<td>S1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP13</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.13 kg</td>
</tr>
</tbody>
</table>

Fans and blowers with D.C. motors
Valves for water-quantity control

Application

Heater control for passenger cars and commercial vehicles.

Valve models

The lower valve cone is designed as a non-return valve.

The valves are open when de-energized.

Shutoff- or pulse valve

W and *W'* heat exchanger optionally upstream or downstream of valve

Changeover valve or pulse valve
Shutoff or timing valves

Similar to original picture

24 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>1 147 412 205</td>
</tr>
<tr>
<td>Nominal voltage (U_n)</td>
<td>24 V</td>
</tr>
<tr>
<td>Resistance (R_p)</td>
<td>48 Ω</td>
</tr>
<tr>
<td>Pressure drop (Δp) at a throughput of V</td>
<td>35 kPa</td>
</tr>
<tr>
<td>Switchable pressure difference (Δp)</td>
<td>160 kPa</td>
</tr>
<tr>
<td>Switching times</td>
<td>≤ 100 ms</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>0 ... 100 %</td>
</tr>
<tr>
<td>Degree of protection (IP)</td>
<td>5K4</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 386.0 g</td>
</tr>
</tbody>
</table>

![Diagram](image1)

12 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>1 147 412 208</td>
</tr>
<tr>
<td>Nominal voltage (U_n)</td>
<td>12 V</td>
</tr>
<tr>
<td>Resistance (R_p)</td>
<td>12.4 Ω</td>
</tr>
<tr>
<td>Pressure drop (Δp) at a throughput of V</td>
<td>35 kPa</td>
</tr>
<tr>
<td>Switchable pressure difference (Δp)</td>
<td>160 kPa</td>
</tr>
<tr>
<td>Switching times</td>
<td>≤ 100 ms</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>0 ... 100 %</td>
</tr>
<tr>
<td>Degree of protection (IP)</td>
<td>5K4</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.4 g</td>
</tr>
</tbody>
</table>

![Diagram](image2)
Shutoff or timing valves

24 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>1 147 412 218</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Resistance</td>
<td>48 Ω</td>
</tr>
<tr>
<td>Pressure drop</td>
<td>Δp = 35 kPa</td>
</tr>
<tr>
<td>at a throughput of</td>
<td>V = 2000 dm³/h</td>
</tr>
<tr>
<td>Switchable pressure difference</td>
<td>Δp = 160 kPa</td>
</tr>
<tr>
<td>Switching times</td>
<td>≤ 100 ms</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>0 ... 100 %</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 5 K 4</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 390,0 g</td>
</tr>
</tbody>
</table>

![Graph showing Δp vs V]

![Image of shutoff or timing valve]

Bosch Automotive Aftermarket

2013 | 2014
Switching or timing valves
Similar to original picture

24 V
Part number: 1 147 412 204
Nominal voltage: $U_n = 24 \text{ V}$
Resistance: $R_{12} = 48 \Omega$
Pressure drop: $\Delta p = 45 \text{ kPa}$
at a throughput of $V = 2000 \text{ dm}^3\text{h}^{-1}$
Switchable
pressure difference $\Delta p = 60 \text{ kPa}$
Switching times: $\leq 100 \text{ ms}$
Duty cycle: $0 \ldots 100 \%$
Degree of protection: IP 5K4
Weight: approx. 0.5 g

Switching or timing valves
Similar to original picture

12 V
Part number: 1 147 412 207
Nominal voltage: $U_n = 12 \text{ V}$
Resistance: $R_{12} = 12.4 \Omega$
Pressure drop: $\Delta p = 45 \text{ kPa}$
at a throughput of $V = 2000 \text{ dm}^3\text{h}^{-1}$
Switchable
pressure difference $\Delta p = 60 \text{ kPa}$
Switching times: $\leq 100 \text{ ms}$
Duty cycle: $0 \ldots 100 \%$
Degree of protection: IP 5K4
Weight: approx. 450.0 g
The PAD is a rotary pump. The stator and electronics are mechanically fully-separated from the rotor in the dry motor housing. The electronics and the stator winding generate an alternating electrical magnetic field, which in turn drives the rotor. The rotor, as part of the pump wheel, is seated in the separate pump housing. The non-contact torque transmission serves to ensure that throughout the entire service life coolant does not come into contact with the electronics.

Advantages for your application

The essential advantages of the PAD auxiliary water pump in comparison to pumps, which are driven by carbon-brush mechanically-commutated electric motors, are:

- A reduction in installation length of up to approx. one third
- Approx. half the weight
- High delivery rate
- Longer service life
- Better efficiency
- Quieter operation

Application examples

For versatile applications Bosch offers auxiliary water pumps with electronically commutated drive motors:

- Heater circuit
- Auxiliary heater
- Charge-air cooling
- Generator cooling
- Turbocharger cooling
- Fuel cooling
- After-run cooling of combustion engines
- Thermal management of electric vehicles
- Battery and electronic cooling
PAD
Water-circulating pump driven by brushless motor

12 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>0 392 023 004</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Delivery</td>
<td>900 dm³/h</td>
</tr>
<tr>
<td>Delivery pressure</td>
<td>0.1 bar</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>R</td>
</tr>
<tr>
<td>Type of duty</td>
<td>S 1</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 69 K</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 0.3 kg</td>
</tr>
</tbody>
</table>

Circuit diagram for connection please contact us

Suitable for AMP connector housing 1-967412-2 encoding A
List of part numbers

<table>
<thead>
<tr>
<th>Part number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 130 002 525</td>
<td>47</td>
</tr>
<tr>
<td>0 130 002 527</td>
<td>47</td>
</tr>
<tr>
<td>0 130 002 529</td>
<td>48</td>
</tr>
<tr>
<td>0 130 002 529</td>
<td>48</td>
</tr>
<tr>
<td>0 130 002 613</td>
<td>49</td>
</tr>
<tr>
<td>0 130 002 632</td>
<td>50</td>
</tr>
<tr>
<td>0 130 002 633</td>
<td>50</td>
</tr>
<tr>
<td>0 130 002 634</td>
<td>51</td>
</tr>
<tr>
<td>0 130 002 636</td>
<td>51</td>
</tr>
<tr>
<td>0 130 002 671</td>
<td>52</td>
</tr>
<tr>
<td>0 130 101 516</td>
<td>55</td>
</tr>
<tr>
<td>0 130 115 152</td>
<td>57</td>
</tr>
<tr>
<td>0 130 115 154</td>
<td>57</td>
</tr>
<tr>
<td>0 130 115 604</td>
<td>61</td>
</tr>
<tr>
<td>0 130 132 01 141</td>
<td>43</td>
</tr>
<tr>
<td>0 132 801 142</td>
<td>43</td>
</tr>
<tr>
<td>0 132 801 143</td>
<td>44</td>
</tr>
<tr>
<td>0 132 801 346</td>
<td>44</td>
</tr>
<tr>
<td>0 132 801 347</td>
<td>45</td>
</tr>
<tr>
<td>0 390 201 900</td>
<td>12</td>
</tr>
<tr>
<td>0 390 201 901</td>
<td>13</td>
</tr>
<tr>
<td>0 390 201 902</td>
<td>13</td>
</tr>
<tr>
<td>0 390 201 903</td>
<td>14</td>
</tr>
<tr>
<td>0 390 201 904</td>
<td>14</td>
</tr>
<tr>
<td>0 390 201 909</td>
<td>12</td>
</tr>
<tr>
<td>0 390 201 913</td>
<td>13</td>
</tr>
<tr>
<td>0 390 201 914</td>
<td>13</td>
</tr>
<tr>
<td>0 390 201 914</td>
<td>14</td>
</tr>
<tr>
<td>0 390 201 915</td>
<td>14</td>
</tr>
<tr>
<td>0 390 201 925</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 390 201 927</td>
<td>15</td>
</tr>
<tr>
<td>0 390 201 941</td>
<td>16</td>
</tr>
<tr>
<td>0 390 201 944</td>
<td>16</td>
</tr>
<tr>
<td>0 390 201 948</td>
<td>11</td>
</tr>
<tr>
<td>0 390 201 949</td>
<td>11</td>
</tr>
<tr>
<td>0 390 201 964</td>
<td>12</td>
</tr>
<tr>
<td>0 390 201 972</td>
<td>17</td>
</tr>
<tr>
<td>0 390 201 973</td>
<td>17</td>
</tr>
<tr>
<td>0 390 201 989</td>
<td>18</td>
</tr>
<tr>
<td>0 390 201 997</td>
<td>18</td>
</tr>
<tr>
<td>0 390 201 999</td>
<td>19</td>
</tr>
<tr>
<td>0 390 203 224</td>
<td>20</td>
</tr>
<tr>
<td>0 390 203 226</td>
<td>20</td>
</tr>
<tr>
<td>0 390 203 227</td>
<td>20</td>
</tr>
<tr>
<td>0 390 203 229</td>
<td>20</td>
</tr>
<tr>
<td>0 390 203 306</td>
<td>21</td>
</tr>
<tr>
<td>0 390 203 307</td>
<td>21</td>
</tr>
<tr>
<td>0 390 203 308</td>
<td>21</td>
</tr>
<tr>
<td>0 390 203 309</td>
<td>21</td>
</tr>
<tr>
<td>0 390 203 310</td>
<td>22</td>
</tr>
<tr>
<td>0 390 203 311</td>
<td>22</td>
</tr>
<tr>
<td>0 390 203 312</td>
<td>22</td>
</tr>
<tr>
<td>0 390 203 313</td>
<td>22</td>
</tr>
<tr>
<td>0 390 203 314</td>
<td>23</td>
</tr>
<tr>
<td>0 390 203 315</td>
<td>23</td>
</tr>
<tr>
<td>0 390 203 316</td>
<td>23</td>
</tr>
<tr>
<td>0 390 203 317</td>
<td>23</td>
</tr>
<tr>
<td>0 390 203 386</td>
<td>24</td>
</tr>
<tr>
<td>0 390 203 431</td>
<td>24</td>
</tr>
<tr>
<td>0 390 204 027</td>
<td>25</td>
</tr>
<tr>
<td>0 390 204 092</td>
<td>53</td>
</tr>
<tr>
<td>0 390 248 015</td>
<td>41</td>
</tr>
<tr>
<td>0 390 248 016</td>
<td>41</td>
</tr>
<tr>
<td>0 390 257 693</td>
<td>28</td>
</tr>
<tr>
<td>0 392 023 004</td>
<td>67</td>
</tr>
<tr>
<td>0 986 337 400</td>
<td>36</td>
</tr>
<tr>
<td>0 986 337 401</td>
<td>36</td>
</tr>
<tr>
<td>0 986 337 402</td>
<td>37</td>
</tr>
<tr>
<td>0 986 337 409</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 986 337 410</td>
<td>37</td>
</tr>
<tr>
<td>0 986 338 100</td>
<td>54</td>
</tr>
<tr>
<td>1 147 412 204</td>
<td>65</td>
</tr>
<tr>
<td>1 147 412 205</td>
<td>63</td>
</tr>
<tr>
<td>1 147 412 207</td>
<td>65</td>
</tr>
<tr>
<td>0 390 201 909</td>
<td>12</td>
</tr>
<tr>
<td>0 390 201 941</td>
<td>16</td>
</tr>
<tr>
<td>0 390 201 944</td>
<td>16</td>
</tr>
<tr>
<td>0 390 201 948</td>
<td>11</td>
</tr>
</tbody>
</table>

Bosch Automotive Aftermarket 2013 | 2014
If you have any special requirements that are not covered by our range of sensors, please specify this in the data sheet below. In the event of any modifications, please state the known product here.

Bosch part number:

Address:

Sender (customer):
- [] Mr
- [] Ms

Name:
Company:
Department:
Address:
Town/Zip:
Tel.:
Fax:
E-mail:

Your reference/dated:
Our dept./person in charge:
Telephone (extension):
Date:

Project description:

Application / intended use:

New project:
Replacement for existing solution:
Competitors used:

Specification available:
- [] Yes
- [] No
Drawing available:
- [] Yes
- [] No
External sample available:
- [] Yes
- [] No

Required quantity:
- [] One-off ______ units

Required delivery date:

Specified quantity on following dates:

Date:
Quantity:
- [] Annual ______ units
- [] Monthly ______ units

Sensor requirements:

Measurement value:

Additional conditions:

Conditions of use:

Remarks: